Compartments
compartment: broomgrass = 75000
Flows
destroyed = (if burning_internsity==2 then Broom_Grass__in_Machije_Vlei else agriculture+decomposition+element([proportion_of_grass_by__digging_uprooting__or_cutting],1)*total_harvesting/300)
growth = (if frequency_of_burning*burning_internsity>0 and element([proportion_of_grass_by__digging_uprooting__or_cutting],3)>0 then grass_growth*Broom_Grass__in_Machije_Vlei+germination else 0)
total harvesting = (if Broom_Grass__in_Machije_Vlei==0 then 0 elseif harvest then(element([proportion_of_grass_by__digging_uprooting__or_cutting],1)+element([proportion_of_grass_by__digging_uprooting__or_cutting],2))*0.008*number_of_harvesters*quantity_harvested_per_person+element([proportion_of_grass_by__digging_uprooting__or_cutting],3)*0.012*number_of_harvesters*quantity_harvested_per_person else 0)
Variables
agriculture = 2
Percent of Machije converted to agriculture
alternative income sources = (1==0)
availability of transport = (if transport_cost<=10 then 1 else 0)
beauty = processing+bundling_with_tube_or_fibre
bundling with tube or fibre = 1
1 for tube
0 for fibre
burning events = 1
burning internsity = (if season>=6 and season<=10 and frequency_of_burning>0 then 2 else 1)
1 = low internsity burning
2 = high internsity burning
comfort = length
decomposition = 5
expected income after harvesting = number_of_brooms_made*market_price_per_broom-permit_price-transport_cost
expected income before harvesting = market_price_per_broom*2000-permit_price-availability_of_transport
frequency of burning = (if rules_enforcement>0.5 then 0 elseif season>=6 and season<10 then burning_events else 0)
germination = (if soil_moisture==1 then seeds else 0)
grass growth = 1-growth_rate*soil_moisture/K
growth rate = 5
harvest = any([time_of_harvesting]==season)
income = number_of_brooms_sold*market_price_per_broom-permit_price
K = 1000000
length = 1
life of broom = bundling_with_tube_or_fibre*ripe_or_unripe*length*whether_cut__or_dug_or_uprooted
maximum number of broom harvest per day = 100
no_of_permits = 150
number of brooms made = 0.99*total_harvesting
Number of brooms sold = availability_of_transport*number_of_brooms_made
transport]
market price per broom = 3+last(quality_of_broom)*season/(supply_from_other_sources+1)
number of harvesters = (if alternative_income_sources then 0 elseif permit_price0.5 then[5,10,85]else[80,10,10]) quality of broom = beauty*life_of_broom*comfort quantity harvested per person = maximum_number_of_broom__harvest_per_day rainfall = element([rainfall_this_month],season) rainfall this month = [193,185,70,32,7,2,0,0,4,28,91,128] Months of the year when harvesting is permitted ripe or unripe = (if element([time_of_harvesting],1)==6 then 1 else 0) 1 = ripe 0 = unripe season = fmod(time(1),12)+1 seeds = (if element([time_of_harvesting],1)==6 and burning_internsity==1 and season==6 then produce else 0) set harvesting season = [6,7,8,9,10] soil moisture = (if rainfall>100 then 1 else 0) supply from other sources = 1 1 = yes there is supply from elsewhere 0 = there is no availabiility time of harvesting = (if rules_enforcement>0.5 then [set_harvesting_season] elseif number_of_people_not_farming<0 then[set_harvesting_season]-3 else[set_harvesting_season]) time of sale = market_price_per_broom transport_cost = 2 Price in dollars to transport a bundle of brooms