You are here

Using a submodel to specify an association between objects

Once our modelling language allows us to think in terms of multiple objects of a certain type, then it is frequently the case that we start to recognise relationships between objects. These relationships may be:

Using a submodel to specify the conditional existence of some part of the model

When a model is implemented in a conventional programming language, large chunks of the program can be enclosed inside an if … end if block: i.e. whether it is actually evaluated depends on some condition. This programming device may be applied to several different purposes:

Using a submodel to specify a dynamically-varying population of objects

The modelling world divides into those whose models are based on differential/difference equations (with or without disaggregation); and those who subscribe to an approach based on collections of objects (variously called object-oriented, individual-based or agent-based modelling).

Using a submodel for disaggregation; or (conversely) specifying a fixed number of objects of a certain classThese two terms are

These two terms are lumped together because they are the same concept, seen from opposite perspectives. You can disaggregate an area into a number of patches; or you can think in terms of one patch, then have multiple patches to represent some larger area. The end result in both cases is exactly the same.

Using a submodel for modular modelling: swapping one module for another

For many years, the battle cry of those fed up with the implementation of models in computer programs was “modular modelling!”. If we had a modular modelling system, it was argued, then models could be easily constructed from a number of pre-programmed modules, and the effectiveness of the community as a whole would be greatly increased by the sharing of these modules, avoiding huge duplications of effort.

Using a submodel to make a part of a model into a stand-alone model

For the model described above, you may want to see how the vegetation part behaves, assuming fixed inputs from the animal and soil sections that affect it. You draw a submodel envelope around the vegetation, open up a separate window for it, then use the File: Save command to save it to a file. You can then start up Simile again, and load just the saved vegetation submodel (which is now a model in its own right). You can now explore how it behaves by itself. This can be very useful for testing and debugging purposes.

Using a submodel for multiple views on a model, perhaps at different scales

Once part of a model is made into a submodel, you can open a separate window for it (by double-clicking on its boundary with the pointer). This window can be kept on the screen while you scroll the main model diagram to some other part of the model. Also, you can change the zoom factor for each main model window or submodel window separately, enabling you to see part of the model in fine detail while maintaining an overview of the whole model at a coarser scale.

Using a submodel to show the main components of a complex model

You have constructed a model with a number of compartments and flows. Some relate to vegetation; some to the animals in the area; some to soil water and nutrients. By grouping the model-diagram elements for these different parts into submodels (called “Vegetation”, “Animals” and “Soil”), the gross structure of the model is immediately apparent.

Submodel

A submodel is first and foremost a way of grouping together a number of other model elements, including other submodels. This is done by either drawing a submodel envelope around a number of elements in the model diagram, or by creating an empty submodel and inserting model elements into it.

Influence arrow

Interpretation

 To say that “A influences B” (i.e. to draw an influence arrow from A to B) means that A is used to calculate a value for B: in other words, the equation for calculating B will include A.

Pages

Subscribe to Simulistics RSS